A Recommended Practice for Software Reliability

Dr. Norman E Schneidewind
Naval Postgradnate School

This article reports on the revisions to the American Institute of Aeronautics and Astronantics’ (ALAA) publication
“ALAA Recommended Practice for Software Reliability (R-013-1992)” [1]. Sponsored by the ALAA and the Institute
of Electrical and Electronics Engineers, the revision addresses reliability prediction throngh all phases of the software life
cycle, since identifying errors early reduces the cost of error correction. Furthermore, there have been advances in modeling
and predicting the reliability of networks and distributed systems that are included in the revision.

Software reliability engineering (SRE) is
a discipline that can help organizations
improve the reliability of products and
processes. The American Institute of
Aeronautics and Astronautics (AIAA)
defines SRE as,

The application of statistical tech-
niques to data collected during sys-
tem development and operation to
specify, predict, estimate, and
assess the reliability of software-
based systems. [1]

This recommended practice [1] is a
composite of models, tools, and databas-
es, and desctibes the what and how details of
SRE, predicting the reliability of software.
It provides information necessary for the
application of software reliability mea-
surement to a project, lays a foundation for
building consistent methods, and estab-
lishes the basic principles for collecting the
performance data needed to assess soft-
wate reliability. The document desctibes
how any user may participate in ongoing,
software reliability assessments or conduct
site- or package-specific studies.

It is important for an organization to
have a disciplined process if it is to pro-
duce highly reliable software. This article
describes the AIAA's recommended prac-
tice and how it is enhanced to include the
risk to reliability due to requirements
changes. A requirements change may
induce ambiguity and uncertainty in the
development process that cause errors in
implementing the changes. Subsequently,
these errors propagate through later phas-
es of development and maintenance, pos-
sibly resulting in significant risks associat-
ed with implementing the requirements.
For example, reliability risk (i.e., risk of
faults and failures induced by changes in
requirements) may be incurred by defi-
ciencies in the process (e.g., lack of preci-
sion in requirements).

A revision of the “AIAA
Recommended Practice for Software
Reliability (R-013-1992),” sponsored by

August 2004

ATAA and the Institute of Electrical and
Electronics Engineers, will address relia-
bility prediction through all phases of the
software life cycle since identifying errors
early reduces the cost of error correction.
It will also examine recent advances in
modeling and predicting the reliability of
networks and distributed systems. At this
time, it is not known when this revision
will be released. The following sections
taken from [1] provide an overview of the
planned revisions.

Purpose

The “AIAA Recommended Practice for
Software Reliability (R-013-1992)” is used
from the start of the requirements phase
through the operational-use phase of the
software life cycle. It also provides input
to the planning process for reliability man-
agement.

The practice describes activities and
qualities of a software reliability estima-
tion and prediction program. It details a
framework that permits risk assessment
and predicting software failure rates, rec-
ommends a set of models for software
reliability estimation and prediction, and
specifies mandatory as well as recom-
mended data collection requirements.

The AIAA practice provides a founda-
tion for practitioners and researchers. It
supports the need of software practition-
ers who are confronted with inconsistent
methods and varying terminology for reli-
ability estimation and prediction, as well as
a plethora of models and data collection
methods. It supports researchers by defin-
ing common terms, by identifying criteria
for model comparison, and by identifying
open research problems in the field.

Intended Audience and
Benefits

Practitioners (e.g., software developers,
software acquisition personnel, technical
managers, and quality and reliability per-
sonnel) and researchers can use the AIAA
practice. Its purpose is to provide a com-
mon baseline for discussion and to define

a procedure for assessing software reliabil-
ity. It is assumed that users of this recom-
mended practice have a basic understand-
ing of the software life cycle and statistical
concepts.

This recommended practice is intend-
ed to support designing, developing, and
testing software. This includes software
quality and software reliability activities. It
also serves as a reference for research on
the subject of software reliability. It is
applicable to in-house, commercial, and
third-party software projects and has been
developed to support a systems reliability
approach. As illustrated in Figure 1, the
AIAA practice considers hardware and,
ultimately, systems characteristics.

SRE Applications

Industry practitioners have successfully

applied SRE to software projects to do the

following [2, 3, 4, 5, 0]:

* Indicate whether a specific, previously
applied software process is likely to
produce code that satisfies a given
software reliability requirement.

* Determine the size and complexity of
a software maintenance effort by pre-
dicting the software failure rate during
the operational phase.

* Provide metrics for process improve-
ment evaluation.

* Assist software safety certification.

* Determine when to release a software
system or to stop testing it.

* Predict the occurrence of the next fail-
ure for a software system.

* Identify elements in software systems
that are leading candidates for redesign
to improve reliability.

* Estimate the reliability of a software
system in operation using this informa-
tion to control change to the system.

Figure 1: System Reliability Characteristics

Sysiem Reilability
|

r- ']

| Hardware Reliabdllry | 1

L
Solftware Relubiley

www.stsc.hill.af.mil 13

Systems Approach

Terminology [1]

Software Quality: (1) The totality of features and characteristics of a software prod-
uct that bear on its ability to satisfy given needs; for example, to conform to specifica-
tions. (2) The degree to which software possesses a desired combination of attribut-
es. (3) The degree to which a customer or user perceives that software meets his or
her composite expectations. (4) The composite characteristics of software that deter-
mine the degree to which the software in use will meet the customer’s expectations.

Software Reliability: (1) The probability that software will not cause the failure of a
system for a specified time under specified conditions. The probability is a function of
the inputs to and use of the system, as well as a function of the existence of faults in
the software. The inputs to the system determine whether existing faults, if any, are
encountered. (2) The ability of a program to perform a required function under stated
conditions for a stated period of time.

Software Reliability Engineering: The application of statistical techniques to data
collected during system development and operation to specify, predict, estimate, and
assess the reliability of software-based systems.

Software Reliability Estimation: The application of statistical techniques to observed
failure data collected during system testing and operation to assess the reliability of the
software.

Software Reliability Model: A mathematical expression that specifies the general
form of the software failure process as a function of factors such as fault introduction,

fault removal, and the operational environment.

Software Reliability Prediction: A forecast of the reliability of the software based on
parameters associated with the software product and its development environment.

The AIAA practice enables software
practitioners to make similar determina-
tions for their particular software systems
as needed. Special attention should be
given in applying this practice to avoid
violating the assumptions inherent in
modeling techniques. Data acquisition
procedures and model selection criteria
are provided and discussed to assist in
these efforts.

Relationship to Hardware and

System Reliability

Hardware Reliability

There are at least two significant differ-
ences between software reliability and
hardware reliability. First, software does
not fatigue, wear out, or burn out. Second,
due to the accessibility of software instruc-
tions within computer memories, any line
of code can contain a fault that, upon exe-
cution, is capable of producing a failure. A
software reliability model specifies the
general form of the dependence of the
failure process on the principal factors that
affect it: fault introduction, fault removal,
and the operational environment.

The failure rate (failures per unit time)
of a software system is generally decreas-
ing due to fault identification and removal.
At a particular time, it is possible to
observe a history of the failure rate of the
software. Software reliability modeling is
done to estimate the form of the curve of

14 CrRosSTALK The Journal of Defense Software Engineering

the failure rate by statistically estimating

the parameters associated with the selected

model. The purpose of this measure is
twofold: (1) to estimate the extra execution
time required to meet a specified reliability
objective, and (2) to identify the expected
reliability of the software when the prod-
uct is released. This procedure is impoz-
tant for cost estimation, resource planning,
schedule validation, and quality prediction
for software maintenance management.

The creation of software and hardware
products is the same in many ways and can
be similarly managed throughout design
and development. However, while the
management techniques may be similar,
there are genuine differences between
hardware and software. The following are
examples:

* Changes to hardware require a series of
important and time-consuming steps:
capital equipment acquisition, compo-
nent procurement, fabrication, assem-
bly, inspection, test, and documenta-
tion. Changing software is frequently
more feasible (although effects of the
changes are not always clear) and
oftentimes requires only code, testing,
and documentation.

* Software has no physical existence. It
includes data as well as logic. Any item
in a file can be a source of failure.

¢ Software does not wear out.
Furthermore, failures attributable to

software faults come without advance
warning and often provide no indica-
tion they have occurred. Hardware, on
the other hand, often provides a period
of graceful degradation.

* Software may be more complex than
hardware, although exact software
copies can be produced, whereas man-
ufacturing limitations affect hardware.

* Repair generally restores hardware to
its previous state. Correction of a soft-
wate fault always changes the software
to a new state.

* Redundancy and fault tolerance for
hardware are common practice. These
concepts are only beginning to be prac-
ticed in software.

* Software developments have tradition-
ally made little use of existing compo-
nents. Hardware is manufactured with
standard parts.

* Hardware reliability is expressed in wall
clock time. Software reliability is
expressed in execution time.

* A high rate of softwate change can be
detrimental to software reliability.
Despite the above differences, hard-

ware and software reliability must be man-

aged as an znfegrated system attribute.

However, these differences must be

acknowledged and accommodated by the

techniques applied to each of these two
types of subsystems in reliability analyses.

System Reliability

When integrating software reliability with

the system it supports, the characterization

of the operational environment is impot-
tant. The operational environment has

three aspects: (1) system configuration, (2)

system evolution, and (3) system opera-

tional profile.

System configuration is the arrange-
ment of the system’s components.
Software-based systems are just that; they
cannot be pure but must include hardware
as well as software components.
Distributed systems are a type of system
configuration. The purpose of determin-
ing the system configuration is twofold:

* To determine how to allocate system
reliability to component reliabilities.

* To determine how to combine compo-
nent reliabilities to establish system
reliability.

In modeling software reliability, it is
necessary to recognize that systems fre-
quently evolve as they are tested. That is,
new code or even new components are
added. Special techniques for dealing with
evolution are provided in [7].

The system’s operational profile char-
acterizes in quantitative fashion how the
software will be used. It lists all operations

August 2004

realized by the software and the probabili-
ty of occurrence and criticality of each
operation.

A system may have multiple opera-
tional profiles or operating modes, which
usually represent difference in function
associated with significant environmental
variables. For example, a space vehicle may
have ascent, on-orbit, and descent operat-
ing modes. Operating modes may be relat-
ed to time, installation location, customer,
or market segment. Reliability can be
tracked separately for different modes if
they are significant. The only limitation is
the extra data collection and cost involved.

Software Reliability Modeling
Software is a complex intellectual product.
Inevitably, some errors are made during
requirements formulation as well as during
designing, coding, and testing the product.
The development process for high-quality
software includes measures that are
intended to discover and correct faults
resulting from these errors, including
reviews, audits, screening by language-
dependent tools, and several levels of test.
Managing these errors involves describing,
classifying, and modeling the effects of the
remaining faults in the delivered product
and thereby helping to reduce their num-
ber and criticality.

Dealing with faults costs money and
impacts development schedules and sys-
tem performance (through increased use
of computer resources such as memory,
CPU time, and peripherals requirements).
There can be too much as well as too little
effort spent dealing with faults. Thus the
system engineer (along with management)
can use reliability estimation and predic-
tion to understand the current system sta-
tus and make trade-off decisions.

Prediction Model Validity

In prediction models, validity depends on
the availability of operational or test failure
data [4]. The premise of most estimation
models is that the failure rate is a direct
function of the number of faults in the
program, and that the failure rate will be
reduced (reliability will be increased) as
faults are detected and eliminated during
test or operations. This premise is reason-
able for the typical test environment, and it
has been shown to give credible results
when correctly applied [3, 5, 6]. Howevet,
the results of prediction models will be
adversely affected by the following:

* Change in failure criteria.

» Significant changes in the code under

test.
* Significant changes in the computing
environment.

August 2004

All of these factors will require a new
set of reliability model parameters to be
computed. Until these can be established,
the effectiveness of the model will be
impaired. Estimation of new parameters
depends on the measurement of several
execution time intervals between failures.

Major changes can occur with respect
to several of the above factors when soft-
ware becomes operational. In the opera-
tional environment, the failure rate is a
function of the fault content of the pro-
gram, of the variability of input and com-
puter states, and of software maintenance
policies. The latter two factors are under
management control and are frequently
utilized to achieve an expected or desired
range of values for the failure rate or the
downtime due to software causes.
Examples of management action that
decrease the failure rate include avoidance
of data combinations that have caused
previous failures, and avoidance of high
workloads.

Software in the operational environ-
ment may not exhibit the reduction in fail-
ure rate with execution time that is an
implicit assumption in most estimation
models. Knowledge of the management
policies is therefore essential in selecting a
software reliability estimation procedure
for the operational environment. Thus, the
estimation of operational reliability from
data obtained during test may not hold
true during operations.

Life-Cycle Approach

A key part of the revision will be the life-
cycle approach to SRE. The following
example illustrates the life-cycle approach
to reliability risk management of the
revised recommended practice: This
approach has been demonstrated on the
space shuttle avionics software [2, 3].

AIAA Practice Applied to the Space
Shuttle

The space shuttle avionics software repre-
sents a successful integration of many of
the computer industry's most advanced
software engineering practices and
approaches. Since its beginning in the late
1970s, this software development and
maintenance project has evolved one of
the world’s most mature software process-
es applying the principles of the highest
levels of the Software Engineering
Institute's Capability Maturity Model®,
trusted software methodology, ISO 9001
standards, and [1].

This software process, considered a bes?
practice by many software industry organi-
zations, includes state-of-the-practice soft-
ware reliability engineering methodologies.

A Recommended Practice for Software Reliability

Life-critical shuttle avionics softwatre pro-
duced by this process is recognized to be
among the highest quality and highest reli-
ability software in operation in the world.
This case study explotes the successful use
of extremely detailed fault and failure his-
tory, throughout the software life cycle, in
the application of SRE techniques to gain
insight into the flight worthiness of the
software and to suggest where to Jook for
remaining defects. The role of software
reliability models and failure prediction
techniques is examined and explained to
apply these approaches on other software
projects. One of the most important
aspects of such an approach is addressed:
how to use and interpret the results of the appli-
cation of such techniques.

Interpretation of Software Reliability
Predictions
Successful use of statistical modeling in
predicting the reliability of a software sys-
tem requires a thorough understanding of
precisely how the resulting predictions are
to be interpreted and applied [5]. The pri-
mary avionics software subsystem (PASS)
(430,000 lines of code) is frequently mod-
ified, at the request of NASA, to add or
change capabilities using a constantly
improving process. Each of these succes-
sive PASS versions constitutes an upgrade
to the preceding software version. Each
new version of the PASS (designated as an
operational increment) contains software
code that has been carried forward from
each of the previous versions (previous-ver-
sion subsel) as well as new code generated
for that new version (new-version subsel). By
applying a reliability model independently
to the code subsets according to the fol-
lowing rules, you can obtain satisfactory
composite predictions for the total ver-
sion:

1. All new code developed for a particular
version does use a nearly constant
process.

2. All code introduced for the first time
for a particular version does, as an
aggregate, build up the same she)f /Jife
and operational execution history.

3. Unless subsequently changed for a
newer capability, thereby becoming
new code for a later version, all new code
is only changed thereafter to correct
faults.

It is essential to recognize that this
approach trequires a vety accurate code
change-history so that every failure can be
uniquely attributed to the version in which
the defective line(s) of code was first intro-
duced. In this way, it is possible to build a
separate failure history for the new code in
each release. To apply SRE to your soft-

www.stsc.hillaf.mil 15

Systems Approach

wate system, you should consider breaking
your systems and processes down into
smaller elements to which a reliability
model can be more accurately applied.
Using this approach, the Naval
Postgraduate School has been successful in
applying SRE to predict the reliability of
the PASS for NASA.

Estimating Execution Time

At the Naval Postgraduate School, we esti-
mate execution time of segments of the
PASS software by analyzing records of
test cases in digital simulations of opera-
tional flight scenarios as well as records of
actual use in shurtle operations. Test case
executions are only counted as operational
execution time for previous-version subsets
of the version being tested if the simula-
tion fidelity very closely matches actual
operational conditions.

Prerelease test execution time for the
new code actually being tested in a version
is never counted as operational execution
time. We use the failure history and oper-
ational execution time history for the new
code subset of each version to generate an
individual reliability prediction for that
new code in each version by separate
applications of the reliability model.

This approach places every line of
code in the total PASS into one of the
subsets of newly developed code, whether
it is new for the original version or any
subsequent version. We then represent the
total reliability of the entire software sys-
tem as that of a composite system of sep-
arate components (new code subsets), each
having an individual execution history and
reliability, connected in series. Lockheed
Martin is currently using this approach to
apply the Schneidewind [8, 9] model as a
means of predicting a conservative lower

bound for the PASS reliability.

Verification and Validation

Software reliability measurement and pre-
diction are useful approaches to verify and
validate software. Measurement refers to
collecting and analyzing data about the
observed reliability of software, for exam-
ple the occurrence of failures during test.
Prediction refers to using a model to fore-
cast future software reliability, for example
failure rate during operation. Measure-
ment also provides the failure data that is
used to estimate the parameters of relia-
bility models (i.e., make the best fit of the
model to the observed failure data).

Once the parameters have been esti-
mated, the model is used to predict the
software’s future reliability. Verification
ensures that the software product, as it
exists in a given project phase, satisfies the

16 CrosSTALK The Journal of Defense Software Engineering

conditions imposed in the preceding
phase (e.g, reliability measurements of
safety-critical software components ob-
tained during test conform to reliability
specifications made during design) [5].
Validation ensures that the software prod-
uct, as it exists in a given project phase,
which could be the end of the project, sat-
isfies requirements (e.g., software reliabili-
ty predictions obtained during test corre-
spond to the reliability specified in the
requirements) [5].

Reliability Measurements and
Predictions

There are a number of reliability measure-
ments and predictions that can be made to
verify and validate the software. Among
these are remaining failures, maximum failures,
total test time required to attain a given fraction
of remaining failures, and time to next failure.
These have been shown to be useful mea-
surements and predictions for: (1) provid-
ing confidence that the software has
achieved reliability goals, (2) rationalizing
how long to test a software component
(e.g, testing sufficiently to verify that the
measured reliability conforms to design
specifications), and (3) analyzing the risk
of not achieving remaining failure and time to
next fatlure goals [6].

Having predictions of the extent to
which the software is not fault-free
(remaining failures) and whether a failure
is likely to occur during a mission (time to
next failure) provides criteria for assessing
the risk of deploying the software.
Furthermore, the fraction of remaining
failures can be used as both an gperational
guality goal in predicting total test time
requirements and, conversely, as an indica-
tor of operational quality as a function of
total test time expended [6].

Risk Assessment

Safety risk pertains to executing the soft-
ware of a safety-critical system where
there is the chance of injury (e.g, astro-
naut injury or fatality), damage (e.g,
destruction of the shuttle), or loss (e.g,
loss of the mission) if a serious software
failure occurs during a mission. In the case
of the shuttle PASS, where the occurrence
of even trivial failures is extremely rare,
the fraction of those failures that pose any
impact to safety or mission success is too
small to be statistically significant.

As a result, for this approach to be fea-
sible, all failures (of any severity) over the
entire 20-year life of the project have been
included in the failure history database for
this analysis. Therefore, the risk criterion
metrics to be discussed for the shuttle
quantify the degree of risk associated with

the occurrence of any software failure, no
matter how insignificant it may be. The
approach used can be applied to safety
risk wherte sufficient data exist.

Two ctiteria for software reliability lev-
els will be defined, then these criteria will
be applied to the risk analysis of safety-
critical software using the PASS as an
example. In the case of the shuttle exam-
ple, the risk represents the degree to
which the occurrence of failures does not
meet required reliability levels, regardless
of how insignificant the failures may be.
Next, a variety of prediction equations
that are used in reliability prediction and
risk analysis have been defined and includ-
ed in the document; included is the rela-
tionship between fime to next failure and
reduction in remaining failures. Then it is
shown how the prediction equations can
be used to integrate testing with reliability
and quality. An example is shown of how
the risk analysis and reliability predictions
can be used to make decisions about
whether the software is ready to deploy;
this approach could be used to determine
whether a software system is saf¢ to deploy.

Criteria for Reliability

If the reliability goal is the reduction of
failures of a specified severity to an
acceptable level of risk [10], then for soft-
ware to be ready to deploy, after having
been tested for total time (t,), it must sat-
isty the following criteria:

Predicted remaining failures
r(tg <rc)]
where,
rc is a specified critical value, and

Predicted time to next failure

TF (t)>ty,)
where,

t;y, is mission duration

The total time (t) could represent a
safe/unsafe criterion, or the time to
remove all faults regardless of severity (as
used in the shuttle example).

For systems that are tested and operat-
ed continuously like the shuttle, t,, TF (t),
and t,, are measured in execution time.
Note that, as with any methodology for
assuring software reliability, there is no
guarantee that the expected level will be
achieved. Rather, with these criteria, the
objective is to reduce the risk of deploying

August 2004

the software to a desired level.

Summary
The existing AIAA practice and planned
revisions have been described. The princi-
ples of SRE, as applied to the revision
have been reviewed. A life-cycle approach
to SRE in the revision has been empha-
sized. The revision is expected to be an
important life-cycle software reliability
process document to achieve the follow-
ing objectives:

* Provide high reliability in Department
of Defense (DoD) and aerospace safe-
ty and mission-critical systems.

* Provide a rational basis for specifying
software reliability requirements in
DoD acquisitions.

* Improve the management of reliability
risk. 4

References

1. American Institute of Aeronautics and
Astronautics. AIAA Recommended
Practice for Software Reliability (R-
013-1992). ISBN: 1563470241.
Reston, VA: ATAA, 1992.

2. Billings, C., et al. “Journey to a Mature
Software Process.” IBM Systems
ournal 33.1 (1994): 46-61.

3. Keller, Ted, and N.E. Schneidewind.
“Successful Application of Software
Reliability Engineering for the NASA
Space Shuttle.” Software Reliability
Engineering Case Studies. Inter-
national Symposium on Software
Reliability Engineering, Albuquerque,
N.M., Nov. 1997: 71-82.

4. Musa, J., et al. Software Reliability:
Measurement, Prediction, Application.
New York: McGraw-Hill, 1987.

5. Schneidewind, N.E., and T. Keller.
“Application of Reliability Models to
the Space Shuttle.” IEEE Software 9.4
(July 1992): 28-33.

6. Schneidewind, N.FE “Reliability
Modeling for Safety-Critical Software.”
IEEFE Transactions on Reliability 46.1
(Mar. 1997): 88-98.

7. Musa, J., et al. Software Reliability:
Measurement, Prediction, Application.
New York: McGraw-Hill, 1987: 166-176.

8. Schneidewind, N.F. “Report on
Results of Discriminant Analysis
Experiment.” 27th Annual NASA/
IEEE Software Engineering Work-
shop, Greenbelt, MD., 5 Dec. 2002.

9. Keller, Ted, N.E. Schneidewind, and
P.A. Thornton. Predictions for
Increasing Confidence _in _ the
Reliability of the Space Shuttle Flight
Software. Proc. of the AIAA
Computing in Aerospace 10, San
Antonio, TX, 28 Mar. 1995: 1-8.

August 2004

10. Schneidewind, N.F. Reliability and
Maintainability _of Requirements
Changes. Proc. of the International
Conference on Software Maintenance,
Florence, Italy, 7-9 Nov. 2001: 127-136.

Additional Reading

1. Schneidewind, N.E. “Software
Reliability Model With Optimal
Selection of Failure Data.” IEEE
Transactions on Software Fngineering
19.11 (Nov. 1993): 1095-1104.

2. Farr, W, and O. Smith. Statistical
Modeling and Estimation of
Reliability Functions for Software
(SMERFS) Users Guide. NAVSWC
'TR-84-373, Revision 3. Naval Surface
Weapons Center, Revised Sept. 1993.

3. Lyu, M. Handbook of Software
Reliability Engineering. New York:
McGraw-Hill, 1995.

4. Musa, John D. Software Reliability

Engineering: More Reliable Software,

Faster Development and Testing. New
York: McGraw-Hill, 1999.

5. Schneidewind, N.E, and T. Keller.
“Application of Reliability Models to
the Space Shuttle.” IEEE Software 9.4
(Jul. 1992): 28-33.

6. Voas,], and K. Miller. “Software
Testability: The New Verification.”
IEEE Software 12.3 (May 1995): 17-28.

About the Author

Norman E Schneidewind,
Ph.D., is professor of
Information Sciences in
the Department of In-
formation Sciences and
the Software Engineering
Group at the Naval Postgraduate
School. Schneidewind is a Fellow of the
Institute of FElectrical and Electronics
Engineers (IEEE), elected in 1992 for
“contributions to software measurement
models in reliability and metrics, and for
leadership in advancing the field of soft-
ware maintenance.” In 2001, he received
the IEEE “Reliability Engineer of the
Yeat” award from the IEEE Reliability
Society.

Naval Postgraduate School
2822 Raccoon TRL

Pebble Beach, CA 93953
Phone: (831) 656-2719

(831) 372-2144

(831) 375-5450

Fax: (831) 372-0445

E-mail: nschneid@nps.navy.mil

A Recommended Practice for Software Reliability

e mmmmmm e ——————
CROSSTALK®
Get Your Free Subscription
Fill out and send us this form.

OO-ALC/MASE
6022 FIR AVE
BLDG 1238
HiLL AFB, UT 84056-5820
FAX: (801) 777-8069 DSN: 777-8069
PHONE: (801) 775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af. mil

NAME:

RANK/ GRADE:

PosITION/TITLE:

ORGANIZATION:

ADDRESS:

BAse/CITY:

STATE: ZiP:

PHONE:()

Fax:()

E-MAIL:

CHeck Box(es) To REQUEST BAcK ISSUES:
MAY2003 [| STRATEGIES AND TECH.
JUNE2003 [| ComM. & MiL. Apps. MEET
JuLy2003 []
Auc2003 []
SEPT2003 []
OcT2003 []
Nov2003 []
DeEc2003 []
MAR2004 []
APR2004 []
MaAY2004
JUuN2004 [| AssESSMENT AND CERT.
JuLy2004 []| Topr 5 PROJECTS

To REQUEST BACK ISSUES ON TOPICS NOT
LISTED ABOVE, PLEASE CONTACT KAREN
RASMUSSEN AT <STSC.CUSTOMERSERVICE@
HILL.AF.MIL>.

Tor 5 PROJECTS
NETWORK-CENTRIC ARCHT.
DEFECT MANAGEMENT
INFORMATION SHARING
DEv. oF REAL-TIME SW
MANAGEMENT BAsics

SW PROCESS IMPROVEMENT
AcQquisITION

r
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
: [] TecH.: PROTECTING AMER.
1

1

1

1

1

1

1

www.stsc.hill.af.mil 17

